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Abstract

This paper first proposes a modeling framework to study diffusion of innovations which exhibit strong interaction with the

institution systems across which they diffuse. A unique character of such generic innovation is that specific applications are

continually developed during its diffusion. This self-propagation in continual applications generation, which is dependent upon the

cumulative installed base of the technological innovation, can be modeled to lead to a dynamic changing carrying capacity in an

otherwise simple logistic diffusion curve. The cumulative installed base is dependent upon the price of technology and the cost

learning dynamics. This paper utilizes a multi-factors learning function to represent such learning dynamics. Empirical estimates

from our model are compared with those from other logistics curve formulations and are shown to better fit the annual PV

production data during the past quarter century in the case of Japan.

The very fact that the potential of this class of innovation can be leveraged only if it interacts closely with the institution highlights

the importance of institutional determinants of adoption and diffusion of such innovations like PV. We therefore attempt to put

forward an institutional framework, based on viewing PV as a technology platform, to consider PV diffusion beyond mathematical

and empirical modeling. Some future research directions are also proposed.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite its geographical disadvantages, Japan has
taken a leading role in world’s PV development. This is
largely due to two categories of inter-related and
reinforcing factors as summarized in Table 1.

First, as of to date, the dominant PV production
technology is based upon crystalline silicon which can
leverage upon the knowledge base of semiconductor-
based electronics component industry. In addition, PV
as a generic technology is central to a complex web of
e front matter r 2004 Elsevier Ltd. All rights reserved.
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related technologies and the interdisciplinary nature of
its development is subjected to the benefit of technology
spillover learning which reinforces mutual interaction
(Watanabe, 1999).

Second, due to the critical nature of PV as a generic
technology, the PV development is targeted by explicit
and exogenous government intervention such as joint
R&D and subsidiary programs initiated by Japan’s
MITI (Ministry of International Trade and Industry).
Most of these programs are long-run R&D programs.
The most notable being the Sunshine Project; since its
inauguration in 1974, industry’s PV R&D has been
largely induced by this Project (Watanabe, 1997).
Other follow-on programs such as the newly esta-
blished Subsidy Program initiated by the New Energy
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Table 1

Identical nature of PV and basic principle of MITI’s PV initiative

(i) PV is categorically of the same nature as semiconductors, which

is a generic technology

(ii) The ‘‘footloose’’ character of the technology which can

maximize the benefit of learning effects and economies of scale

(iii) The interdisciplinary nature of its development, which can

maximize the benefit of technology spill-over, and

(iv) Efficient learning is linked to technology spill-over and both

have mutually stimulation interactions.

In light of these advantages, MITI initiated PV development by

(i) Encouraging the broad involvement of cross sectoral industry,

(ii) Stimulating inter-technology stimulating and cross sectoral

technology spill-over,

(iii) Inducing vigorous industry investment in PV R&D leading to

an increase in technology stock, and

(iv) Creating initial market by providing subsidy program, thereby

expecting to trigger a virtuous cycle.

Mutually
stimulating 
interaction

Maximize benefits of

Learning effects

Footloose character

Stimulation/inducement 

Maximize benefits of

Technology spillover

 Interdisciplinary nature

Encouraging the broad cross sectoral industry involvement 
Stimulating inter-technology stimulation and cross sectoral technology 

spillover

Virtuous cycle 
between

R&D, market growth and price reduction

Fig. 1. Mechanism of Inducing System of PV Development. Source:

Watanabe et al. (2002).
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Fig. 2. Trends in PV production (1974–2000). a—1974: Inauguration

of the Sunshine Project. b—1979: Strategy to Accelerate the Sunshine

Project. c—1980: Establishment of NEDO (New Energy Development

Organization). d—1990: Establishment of PVTEC (Photovoltaic

Power Generation Technology Research Association). e—1993:

Inauguration of the New Sunshine Program. f—1994: Start of the

NEF Subsidy Program. g—1995: Deregulation of the Law of Electric

Power Industry. h—1997: New Energy Utilization Act.
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Foundation (NEF) in 1994 are aimed at triggering
market acceptances of PV which will lead to acceleration
of PV production (Watanabe et al., 2002). This is a two-
pronged approach to accelerate the acceptance of PV as
a viable source of renewable source in Japan.
Supported by these efforts, PV development trajec-

tory sustains a virtuous cycle or positive feedback
among R&D, market growth and cost reduction as
illustrated in Fig. 1 in Japan. Market growth induces
and is driven by the continual development of specific
applications1 of PV in different sectors and contexts.
2PV can therefore be characterized as a self-propagating
innovation as new applications are continually gener-
ated as it diffuses across the institution or potential user
community. (Watanabe et al., 2000).

1.1. Some facts and figures

Driven by such virtuous cycle industry dynamics,
Japan’s PV (solar cell) production in 1996 amounted to
38.9MW which accounted for 23.9% of the world’s
total production following the US (38.9MW, 43.9%).
However, Japan’s production dramatically increased
leading to 49.0MW (32.0%) in 1998, 80.0MW (39.7%)
in 1999 and 128.6MW (44.7%) in 2000, and ranked first
in the world from 1999 on as illustrated in Fig. 2.
1There are four primary types of applications for PV power systems:

off-grid domestic, off-grid non-domestic, grid-connected distributed

and grid-connected centralized.
2Japan continues to make dramatic progress in implementing

significant PV capacity through a range of research demonstration

and market measures. The main programs implemented in 2000 were:

PV field test project for public facilities; residential PV system

dissemination program; PV field test project for industrial use;

introduction and promotion of new energy at regional level; financial

support project for entrepreneurs introducing new energy business

models; support projects of local efforts to introduce energy and PV

applications in the educational sector such as the Eco-school

promotion pilot model project. (source: NEDO, 2001).
Taking Japan’s PV development and diffusion trajec-
tory over the last quarter century, in order to better
understand existing3 and predict future trajectory of PV
development in Japan, we attempt to postulate a
framework to model diffusion of PV. Our objective in
this paper is to model the diffusion dynamics and also to
suggest a broader institutional framework that facil-
itates diffusion of self-propagating innovations.
The next section reviews received theories of produc-

tion learning and technology diffusion. Section 3 details
the construction of a model of diffusion for PV and
corresponding empirical analysis of actual PV produc-
tion data. Section 4 outlines an institutional framework
for diffusion of PV. Section 5 concludes with some
directions for future research.
3For example, as is evident in Fig. 2, there is a conspicuous jump,

particularly from 1997, in the diffusion trajectory. It is essential to

understand if this jump is due to exogenous policy intervention or

endogenous learning.
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2. Towards a modeling framework of PV diffusion

In order to better understand existing4 and predict
future trajectory of PV development in Japan, we
attempt to postulate a framework to model diffusion
of PV. Utilizing the logistic curve formulation, we are
interested to incorporate different modes of learning in
the supplier and user sides which drives the PV
diffusion. Production learning, however, stems not only
from cumulative production but is also due to knowl-
edge stock built-up due to exogenous government
initiated R&D and subsidiary programs. User learning,
which is proportional to the existing cumulative
installed base of PV, has a direct impact upon the
carrying capacity or potential adopter population size in
the logistic curve. The dynamic capacity of the diffusion
trajectory of PV is therefore postulated as a function of
the cumulative production (installed base) of PV. We
next provide a review of received theories of production
learning and technology diffusion to pave the way for
formulation of PV diffusion model.
2.1. Production learning

Beginning with Wright (1936) a number of studies
have demonstrated that the unit cost of producing
manufactured goods tends to decline significantly as
more are produced. It has been argued that this effect is
the result of the development of increasing skill in
production attained by what Arrow (1962) has termed
‘‘learning-by-doing.’’ More recently, Rosenberg (1982)
has demonstrated that similar gains can accrue to the
end users of a product as their skill or understanding
grow through ‘‘learning-by-using.’’
Arrow (1962) drew the economic implications of

learning-by-doing. He generalized the learning effects
and proposed a hypothesis for economic studies that
‘‘technical change in general can be ascribed to
experience, and it is the very activity of production
which gives rise to problems for which favorable
responses are selected over time.’’ An important
empirical question concerning learning in the econom-
ics, industrial engineering and management science
literature is which index or proxy of experience is the
best and under what conditions. While in Arrow’s
model, he used cumulative investment as embodiment of
experience, some authors have used cumulative output
or production as a proxy of experience. An innovative
empirical study by Lieberman (1984) used both cumu-
lative output and cumulative investment as index of
experience. The significance of this is that he tried to
4For example, as is evident in Fig. 2, there is a conspicuous jump,

particularly from 1997, in the diffusion trajectory. It is essential to

understand if this jump is due to exogenous policy intervention or

endogenous learning.
distinguish learning into cumulative production output
driven autonomous learning and R&D driven induced
learning as cumulative investment is closely related to
R&D spending. Solow (1997) also suggested that long
term productivity will not be sustained by continual
cumulative production alone but must be complemented
by discrete technological innovations obtained by R&D.
Continuous improvement is not the appropriate foun-
dation for unbounded growth. The number of man-
hours needed to fabricate the airframe for a B-17 could
not have been diminished to negligibility without some
technological breakthrough. A major theme is therefore
to combine innovation and continuous improvement
(learning by doing).
As suggested by the various learning paradigms

above, the claim that cost reduction or productivity
improvement can be attributed solely to increase in
(passive) cumulative production independent from any
other factors needs revision; another factor that may
account (also) for productivity improvement is techno-
logical progress. A possible proxy or index for
technological progress is technology knowledge stock.
In this vein, Kouvaritakis et al. (2000) proposed a two

factors learning curve (2FLC) model which incorporated
both cumulative production and R&D expenditure
indexed by cumulative technology stock5 as follows:

C ¼ AK�aT�b;

where C is the unit cost of production; A the original
specific cost at unit cumulative capacity and unit
technology stock; K the cumulative production; T the
cumulative technology stock; -a the learning-by-doing
rate; and –b the learning-by-searching rate. It is
interesting to note that this functional form can be
interpreted as the classical Arrow form6 augmented with
technology progress. We can assume in the 2FLC
learning model that the effect of cumulative production
on cost reduction is due to autonomous learning while
the effect of cumulative technology stock on cost is due
to induced learning or R&D investment such as due to
exogenous governmental subsidiary programs.
2.2. Technology diffusion

In his work, ‘‘Diffusion of Innovation,’’ Rogers
(1983) defined diffusion as ‘‘the process by which an
innovation is communicated through certain channels
over time among the members of a social system.’’
Existing literature on innovation or technology diffusion
can be roughly classified into three strands: (1) modeling
5A dynamic version of the model will need to include the time lag

from R&D effort to actual technology knowledge generation and its

subsequent depreciation.
6The Arrow classical learning by doing functional form can be

summarized as: C ¼ AK�a:
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the successive generations of a technology, (2) modeling
the technology substitution where a superior technology
replaces an existing technology and (3) modeling the
diffusion of a novel generic innovation. The modeling
interests range from delineating and incorporating
explanatory market variables such as price to account
for diffusion to a more microscopic account of the
rational to adopt a technology such as whether it is
innovation driven or imitation driven. There are also
emerging interests concerning how institutional factors
and the characteristics of the innovations, in terms of
their radical-ity and scope (Lee et al., 2003) will
determine their diffusion.
The diffusion process is actually similar to the

contagion process of an epidemic disease (Griliches,
1957) and exhibits S-shaped growth. This process is well
modeled by the simple logistic growth function, 7an
epidemic function which was first introduced by
Vehrlust in 1845 (Meyer, 1994). While this simple
logistic growth function displays diffusion symmetric
with respect to the deflection point, observed diffusion
patterns are not necessarily so. From a modeling
perspective, Dixon (1980) postulated the Gompertz curve

that is more general and can admit non-symmetrical
diffusion trajectories.
Meyer extended the analysis of logistic functions to

cases in which dual growth processes operate such as
when cars first replaced the population of horses but
then took on a further growth trajectory of their own.
Aiming at modeling such diffusion processes that
contain complex sub-growth processes that cannot be
well modeled by the single logistic, Meyer (1994)
introduced the bi-logistic growth function.8

In addition to single and bi-logistic growth to model
diffusion of innovations, some innovations interact with
institutions and display systematic changes in their
process of growth and maturity (Watanabe et al., 2002).
One such example is network externality (Oster, 1994)
observed in the case of the diffusion process of
Information Technology or other network-dependent
products. The usefulness of such networking products
depends upon the number of users within the same
compatible network, the rate of adoption will therefore
increase as the cumulated installed base or network size
rises, usually exponentially until physical or other limits
slow the adoption. Meyer and Ausbel (1999) introduced
an extension of the simple logistic model of growth by
allowing a sigmoid increasing carrying capacity. This
approach admits innovation diffusion trajectories with
steadily increasing carrying capacity due to innovations
interacting and altering the institution (Watanabe et al.,
7A general formulation is the Bass model of which the simple logistic

curve is a special case.
8The bi-logistic growth function can further be refined into four

categories: sequential, superposed, converging and diverging.
2002). This logistic growth with a dynamic carrying

capacity approach will be utilized and adapted in this
study of PV diffusion in Japan.
3. Diffusion trajectory of PV as a self-propagating

innovation

3.1. Carrying capacity of self-propagating innovation

process

In the diffusion process of self-propagating innova-
tions typically observed in innovation process of IT and
PV, the following mechanism can be identified (Wata-
nabe et al., 2002).
Demand (D) increase leads to increase in production

(y) resulting in increasing cumulative production (Y)
which in turn activates and maximizes interaction (IA)
with institutions leading to an increase in potential
customers (carrying capacity, N) (Watanabe et al., 2002)
as illustrated in Fig. 3. The essence being which the
carrying capacity, which is the potential adopter
population, is dependent upon the effect of the
innovation’s interaction with the institution.

N ¼ Nðeffects of interaction with institutionsÞ: (1)

As explained, the effect of a self-propagating inno-
vation interacting with the institution is dependent
upon the magnitude of the cumulative installed base
of the innovation which is directly a function of the price
of the technology. The price is driven by cost of
production which is subjected to the general learning
by doing LE effects (Arrow, 1962). The dynamic
carrying capacity is in turn subjected to the instanta-
neous cumulative installed base, due to the effect of
network externality. Thus, dynamic carrying capacity at
time t,NðtÞ; can be enumerated by the following
equation:

NðtÞ ¼ N0 LE�a; (2)

where N0 is the initial carrying capacity; and a the
elasticity of learning to carrying capacity. Given the
prices of technology at time t to be pðtÞ; the learning
process (LE) leads to production cost reduction which
will lead to a price drop as represented by the following
function:

pðtÞ ¼ p0 Y ðtÞð Þ
�l

¼ LE; (3)

where p0 is the initial price; Y ðtÞ the cumulative
production at time t; and l the learning coefficient.
Following Kouvaritakis’s (2000) postulate on 2FLC,

if we express learning effect process by multi-factors
function incorporating internal factors such as cumula-
tive production and economies of scale, and exter-
nal factors such as technology stock, the following
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Fig. 3. Trajectory of carrying capacity of self-propagating innovations. Source: Watanabe et al. (2003a,b).
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multi-factors learning function can be developed:

LE ¼ p0e
�l1tY#ðtÞ

�l2TðtÞ�l3 ; (4)

where l1 is the time effect on cost due to economy of
scale; Y#ðtÞ the cumulative production

9 avoiding dupli-
cation of technology stock (T); and l2 and l3 the
learning coefficients of cumulative production and
technology stock, respectively.
Therefore, carrying capacity can be enumerated by

the following equation:

NðtÞ ¼ N0LE�a ¼ N0 p0e
�l1tY#ðtÞ

�l2TðtÞ�l3
� ��a

: (5)

As is evident in Eq. (5), we have explicitly modeled the
dynamic capacity, which is a parameter of the diffusion
curve, in terms of both production side learning
parameters and exogenous technology stocks. There-
fore, we attempt to model the unique property of self
propagation of an innovation, via a changing dynamic
capacity, in terms of its production-based and institu-
tional10 (policy-initiated) underpinnings. This is a novel
approach in this paper.

3.2. Diffusion process of self-propagating innovations

As reviewed in Section 3.1, since diffusion process of
self-propagating innovations will accompany with dy-
9Note that the cumulative production without duplication of

technology stocks prevents double counting of technology’s effect on

cost reduction. It must also be stressed that the effect of cumulative

production on cost is due to learning by doing or dynamic economy of

scale. The effect of static economy of scale is assumed by a time effect

on cost. See e.g. Shum and Watanabe (2004, [19]) for their

categorization of different types of production economies such as

static economy of scale, dynamic economy of scale, static economy of

scope and dynamic economy of scope.
10Here, institutional refers to general non-market based factors.
namic carrying capacity and that its diffusion of
innovation is not necessarily symmetric with respect to
deflection point, the diffusion process can in general be
traced by Gompertz function (Dixon, 1980):

d

dt
ln Y ðtÞ ¼ b ln NðtÞ � ln Y ðtÞð Þ; (6)

where b indicates coefficient of diffusion velocity
(Metcalfe, 1981).
Making provision for a dynamic changing capacity

for self-propagating diffusion, substituting Eq. (5) for
NðtÞ in Eq. (6), the following equation can be obtained:

d

dt
ln Y ðtÞ ¼ b ln N0 � a ln p0 þ al1t þ al2

�
ln Y# þ al3 ln T � ln Y ðtÞÞ: ð7Þ

With the establishing of (7) and based upon the
observed cumulative PV production Y, the dynamic
changing capacity N(t) of the self-propagating PV
innovation can therefore be estimated.
4. Empirical analysis of production and diffusion

trajectory of PV in Japan

4.1. Development of multifactor learning function

We now develop a production function for the PV
technology. We assume a standard Cobb–Douglas type
for tractability. The factors of production are labor,
capital and knowledge stocks. Labor and capital are
appropriated on a priority basis in accordance with
trends in relative energy prices (Pey)11 (Watanabe, 1997,
11Number of labor involved in PV production is generally

proportional to number of researchers responsible for PV R&D which
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1999), its production (y) can be depicted by the
following function:

y ¼ f ðL;K ;TÞ ¼ f ðLðPeyÞ;KðPeyÞ;TÞ � f ðPey;TÞ: (8)

This can be further simplified as follow according to the
Cobb–Douglas functional form

y ¼ APeyb1Tb2 ; (9)

where A is the scale factor; and b1and b2 the elasticity of
relative energy prices and technology stock to produc-
tion, respectively.
Conducting correlation analysis of Eq. (9) by taking

logarithm over the period 1975–1996, the following
results with high statistical significance are obtained:

(10)

From Eq. (10) technology elasticity to production b2 can
be identified as 2.213 with extremely high statistical
significance.
From Eq. (9) PV production avoiding duplication

with technology stock (T) can be obtained as follows:

y# ¼
y

Tb2
: (11)

Therefore, the cumulative production avoiding dupli-
cation with technology stock can be depicted as follows:

Y# ¼
X y

Tb2
: (12)
(15)

12Metcalfe, in his ‘‘Impulse and Diffusion in the Study of Technical
Substituting Eq. (12) for Y# in Eqs. (3) and (4), the
following equation is obtained:

pðtÞ ¼ p0e
�l1t

X y

Tb2

� ��l2

T�l3 : (13)
(footnote continued)

are strongly correlated with trends in relative energy prices as follows

(1976–1996):
Applying technology elasticity to production, b2 ¼

2:213 identified by Eq. (10) and conducting regression
analysis of Eq. (13) by taking logarithm over the period
1975–1996, the following multifactor learning function
consisting of effects of static economy of scale,
cumulative production and technology stock can be
obtained with high statistical significance:

(14)

From Eq. (14) learning coefficients of three factors,
coefficients of economy of scale, elasticity of cumulative
production to price, and technology stock to price can
be identified as –0.034, –0.484 and –0.207, respectively;
thus multifactor learning function can be developed
accordingly. Learning rate of cumulative production is
1-2�0.484=0.285, while learning rate of technology stock
is 1-2�0.207= 0.134.

4.2. Diffusion process of self-propagating innovations

In order to demonstrate the hypothesis that a
signature characteristic of self propagation innovation
is that the dynamic carrying capacity of the diffusion
trajectory is subjected to effects of the innovation’s
interaction with institutions through learning, correla-
tion analysis of Eq. (7) is conducted using Japan’s PV
data from 1975–1996. The following results with high
statistical significance are obtained:
In this analysis, following Metcalfe (1981) [7] coefficient
of diffusion velocity,12 b is assumed to be subject to
Change,’’ (1981) postulates the diffusion equilibrium of a new

industrial material (e.g. rayon) as a function of its technical properties

and price relative to those of competing materials as follows: gd ðtÞ ¼

b½mðpÞ � yðtÞ� where gd(t): proportionate rate of growth of demand at t,

m(p): equilibrium market demand depending on price p, y(t): the rate

of demand at t, and b: adoption coefficient. Adoption coefficient b

implies diffusion velocity and the above equation can be reformulated

to b as a function of relative price with competing materials.
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energy prices and depicted as follows:13

b ¼ b0 þ b1 Pey þ b2D; (16)

where D indicates dummy variables corresponding to a
turning point of international oil prices from increasing
trend lasting up until 1982 to declining trend starting
from 1983. Therefore, D=1 for 1982 and 1983, and
D=0 for other years.
Fig. 4 illustrates trends in PV yearly production over

the period 1975-1996 by comparing actual trajectory
and estimated trajectory derived from Eq. (15).
Note that the estimated trajectory reflects the actual

behavior of PV production in Japan with a highly
representative fit-ability. This trajectory demonstrates
an indication of sharp increase after 1995. This is
considered due primarily to the inauguration of the New
Sunshine Program in 1993 and also the Subsidy
Program for residential PV systems initiated by the
New Energy Foundation (NEF) starting from 1994
(Watanabe et al., 2003a, b). This suggests the multi-
factors learning approach does account for effects on
diffusion due to exogenous policy stimulation.
Fig. 5 compares the projected carrying capacity

generated by our approach the Multi-factors learning
function (MFLF) and those generated by, say, an
epidemic function with dynamic carrying capacity
13The results of the correlation analysis by applying Eq. (12) to Eq.

(7) is as follows which demonstrates b0 is statistically insignificant

suggesting b0 in Eq. (16) should be treated as b0 ¼ 0
(EFDCP) shown in (17)

Y ðtÞ ¼
NN

1þ a expð�btÞ þ baN

b�bN
expð�bNtÞ

; (17)

where a, b, aN, and bN are the coefficients; and NN the
carrying capacity.
We also included the cumulative production as is

generated by our approach and the actual cumulative
production data as comparison. The followings are
observed: the carrying capacity as generated by the
MFLF 8, we note that contrary to the gap in cumulative
production trajectory, the projected carrying capacity
maintains its smooth behavior enveloping the cumula-
tive production. It seems therefore that the estimate of
dynamic carrying capacity is more reliable than the
estimates of the cumulative production due to that we
explicitly model.
In general, we have found that the MFLF approach

yields the best estimate of carrying capacity of PV
diffusion due to that it nicely envelopes the actual PV
cumulative production data. On the other hand, the
other carrying capacity estimates (the two dashed lines
in Fig. 6) by EFDCP either overestimate or under-
estimate the carrying capacity. The latter being that (the
lower dashed trajectory) however crosses from below the
actual cumulative production in 1997, 1998 and 1999
which is implausible since actual cumulative production
should not be larger than carrying capacity.
The upper trajectory is, while looks more promising,

much higher than the carrying capacity estimated by
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Table 2

Comparison of carrying capacity estimation approaches

Traditional (EFWDCC) N ¼ NðtÞ Estimated by general specification of how carrying capacity will vary

Incorporation (DTMFLF) N ¼ N t;Y#ðtÞ;TðtÞð Þ Estimated by specifying how carrying capacity is driven by multi-factors

learning, capturing effects of cumulative production and technology stock built-

up due to exogenous policies
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multifactor learning function and discrepancy between
dashed lines (lower line and upper line) is too big to rely
on these estimations. A possible source of inaccuracy in
these two epidemic functions with dynamic capacity is
that its formulation is general without provision for
interaction of the diffusing innovation and institution.
Meyer and Ausubel (1999) proposed logistic models
with logistically varying dynamic carrying capacity or
the so-called logistic inside a logistic. Others (Banks
1994) describe models where the dynamic carrying
capacity varied sinusoid-ally, exponentially and linearly.
These formulations are deemed to be lacking a physical
meaning as of why the capacity is changing in a
particular fashion.
On the other hand, our contribution in this model is

that we explicitly model the dynamic capacity as a
function of the price of technology subjected to
production cost learning by doing and technology stock,
thus influencing the installed base upon which the
interaction between the innovation and the institution in
the sequel depends. By incorporating this more refined
self-propagating characteristic of PV into the represen-
tation of the dynamic capacity, our trajectory neither
overestimates nor underestimates and demonstrates a
very steady trajectory keeping a reasonable margin with
the cumulative production trajectory compared to that
derived from a ‘‘general’’ epidemic function with
dynamic changing capacity. These two different ap-
proaches to estimate carrying capacity for self-propa-
gating innovations are compared in Table 2.
5. Institutional framework for diffusion of PV

There is no doubt that the presented modeling
exercise above demonstrates the importance of account-
ing for an economic mechanism which makes provision
for a changing carrying capacity of an innovation or a
technology during its diffusion. Carrying capacity is
changing due to that new applications in the user
community are continually discovered. PV as a generic
renewable energy technology (RET) will be increasingly
applied to newer energy problems and applications in
future. This constitutes the self-propagation nature of
the technology. This is a practical characterization of
the technology with a key implication being that if PV is
to be diffused widely, an institutional environment that
facilitates the engagement of PV technology develop-
ment and end user applications engineering must be
established. A sense of local adaptation of a generic
technology is called for.
This is very different from the existing production

paradigm of fossil-based energy technology which
emphasizes generation, distribution and consumption
scaling. Efficiency counts in the existing system. For
renewable energy like PV, customization to local
condition is more important in order that it would at
all be accepted. Tsoutsos and Stamboulis (2004)
suggested that a user-oriented policy, which requires
the development of concrete adapted solutions, is
considered instrumental to the successful diffusion of
renewable energy technologies like PV.
In this vein, the generic PV technology can be

considered as a technology platform which is to be
customized to different local application contexts. This
is very similar to the principle of product platform in
which a similar architecture of an engineering solution is
reused across different applications with differentiation.
However, an important principle is that there must be a
proper mechanism to transfer the competence and
knowledge across different derivative development
projects in order that the platform or the technology
will get adopted. PV technology suppliers must make
provision for such an infrastructure or institution so
that cross-learning (Shum, 2003) among different
projects developers or intermediate systems integrators
across time and space is possible. This is a cornerstone
of this user-oriented policy.
Another key aspect of this user-oriented policy is that

it will have externality effects beyond the technology
supplier and the end users. This creates and sustains a
local eco-system of complementary technologies and
services suppliers such as software, design and engineer-
ing services, materials, construction and mechanical
engineering. The type of interactive, collocated product
development and learning achieved not only lead to the
performance improvement of the local renewable
technological system but also exhibits export dynamism
and is an important mechanism for the diffusion of the
RET under consideration. Such local collaborative
enterprises contribute to mobilization of public opinions
and local resources and creates the basic fabrics of a new
socio-economic landscape for the diffusion of the RET
under consideration. Suitable institution to finance,
coordinate and sustain such a local cluster of players
must be established.
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While the above concerns about the downstream
applications development for the PV technology,
another important consideration is the development of
the technology itself during its diffusion. A rather
unexplored area of study in technology diffusion is the
continual interaction between the technological innova-
tion and its diffusion; specifically, when an innovation is
diffusing, users will have opinions as of how to improve
the innovation. The continual improvement of the
original innovation may facilitate its further diffusion.
In the case of diffusion of PV, apart from generation

of local and specific applications, the continual devel-
opment of the technology strives to improve the
performance and reduce production costs of the PV
cells. As a result, over a period of 20 years, the average
efficiency of the modules has improved from about
7–8% at the end of the 1970s to between 13–15% at
present. Even higher efficiency has been achieved for
prototypical cell in experimental settings using the best
processes (Menanteau, 2000). Although cost has fallen
considerably since the first terrestrial applications [$300/
Wp] and are now around $3–4/Wp, they are still
significantly higher than the objective of 	$0.5/Wp.
There are several factors of this difficulty due to still
small production scale and the lack of any radical
innovation in the production process.
A more fundamental concern is the choice of

production process for PV manufacturing. This will
determine the extent of cost reduction achievable by
learning by doing. In the 1980, mono-crystalline silicon
represented 90% of the commercial production of the
PV cells, but since then its relative importance has
gradually declined in favor of polycrystalline silicon.
These two technologies, however, together still hold a
market share of 80% of PV sales (1995). Crystalline
silicon-based production process can be regarded as a
dominant technology in PV production.
Adoption of the crystalline silicon technology for PV

production had the benefit to draw upon the learning
process already underway in the electronics sector which
is also silicon-based. However, the current PV cell
production processes today differs very little from those
initially used in the electronics industry and developed
for producing cells for space applications. Cost was of
secondary importance in the space applications since PV
cells represented a very small portion of the total cost of
building and launching a satellite. In essence, existing
processes are better adapted to small-scale production of
high efficiency and top quality PV cells (Menanteau,
2000).
This historical analysis of the emergence of produc-

tion technologies for PV cells makes it clear that the
initial application niche (Weber and Dorda, 1999) and
the associated production processes will have long term
effects on the subsequent development trajectory of the
industry. The adoption of silicon-based production
technology for PV is due not only to its being used by
the electronics component sector but also is restrained
by the choice of initial niche applications requirements.
To revisit a [new] diffusion strategy for the PV
technology in the future, we need to appraise different
technology options.
While cost reduction can be expected with incremen-

tal progress on crystalline and polycrystalline silicon-
based cells, experts believe that only thin-film technol-
ogies have the potential to reach module prices of $1/
Wp ((Menanteau, 2000). Thin-film technologies use
radically different manufacturing processes and are
particularly suited to large-scale industrial production
because the active material can be deposited on large
glass or metal substrates. Thin-film technologies seem
potentially more promising given the possibility for
much greater cost reductions than in the case of
crystalline silicon technologies. A hybrid technology
known as thin-film silicon has the potential to benefit
from an existing knowledge base as well as the
likelihood of cost reduction in thin-film technologies.
All these existing and new technologies, crystalline-

silicon based, hybrid or thin-film and its variants, in
their vying for as a dominant production technology for
PV in the future, will be judged in terms of the
following: the potential for performance improvement,
the feasibility of introducing industrial-scale manufac-
turing processes, the extent of savings to be expected
from larger production batch, the possibility of benefit-
ing simultaneously from scale effects and exogenous
policy initiatives, feedstock cost structure etc. From a
diffusion standpoint, the dominant technology must be
able to fully benefit from the repeated iterations of
innovation and re-innovation (improvement) during its
diffusion. If a technology ‘‘run out of room for
improvement’’ too soon, it may not be a viable
candidate from the standpoint of sustained and inter-
active development among suppliers and users. On the
other hand, the technology must also be able to leverage
existing experience. Exogenous policy initiatives to
invest upon and increase knowledge stock of a given
PV production technology, thus expediting the diffusion
of PV, must be based on an explicit understanding of
this trade-off.
6. Conclusion

PV as a sustainable energy technology is categorically
of the same nature as semiconductors or other silicon-
based technologies as it is a generic technology
exhibiting a ‘‘footloose’’ character. This makes the PV
industry highly subjected to interdisciplinary develop-
ment and spillover learning in development. Further-
more, applications of PV are continually developed
during its diffusion across user community and
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institutions. Exogenous governmental supports and
policies targeted to develop PV further reinforce this
critical nature of PV. The result is a dramatic increase in
Japan’s PV development in the very recent years of
the 1990s.
We attempted to develop a novel model to address

development and diffusion of such so-called self-
propagating innovations under exogenous policy initia-
tive. The most important aspect our approach captures
is a formulation of the interaction of the innovation with
the institution in terms of a dynamically changing
carrying capacity of a suitable diffusion curve. The
carrying capacity or the potential adopter population of
PV energy technology is directly dependent upon the
cost learning in the supply side. Cost learning is also due
to induced technology stocks driven by exogenous
governmental R&D policy initiative. These two cate-
gories of cost reduction sources are summarized in a
multi-factors (cumulative production and technology
stocks) learning function in order to explain observed
diffusion trajectory of PV in Japan. Our contribution in
this paper is that we have specified a policy driven
economic mechanism which attempts to explain how the
carrying capacity of an innovation may be changed
during its diffusion instead of an assumed or general
functional as is prevailing in the existing literature.
Taking Japan’s PV development and diffusion trajec-

tory over the last quarter century, our approach is able
to reflect the actual behavior of Japan’s PV production
under exogenous policy initiatives with extremely high
representative fit-ability. We also showed that our
approach provides reliable trajectory of carrying
capacity suggesting trustworthy forecast of PV deve-
lopment in the future. Our model can therefore serve
as a useful policy analysis tool to predict effects of,
for example, new potential policy initiatives which
will have strong influence upon the economics of
production and diffusion of PV as a sustainable energy
technology.
Beyond modeling and empirical analysis and unique

context of Japan, in general, it is important to highlight
that PV or other RET represent new production
paradigm in energy sector and are made up of multiple
discrete and associated linkage mechanisms. These
complex systemic technologies are delivered by commu-
nities of organization and their diffusion are especially
subjected to institutional determinants. We have
touched upon several dimensions of this institution such
as customization to local applications, collocated
applications development and cross-learning among
applications. These various aspects can be summarized
by a user-oriented policy that facilitates applications
generation. We also highlight the importance of the
choice of a production technology from the standpoint
of its potential to be improved upon driven by learning
by using and exogenous policy stimulation. A two-
pronged comprehensive approach in both supply and
demand sides is necessary.
Further works on diffusion of PV can be targeted

towards delineating and analyzing the significance of the
respective constituent factors in the multi-factors learn-
ing function in their contribution to self-propagation in
the supply side. In the demand side, we need to explore
new modeling capability to capture applications gen-
eration in the logistic curve formalism. Overall, newer
diffusion frameworks must address both the effects of
continual improvement of the innovation and the
creation of new applications for the innovation. Both
of these are essential determinants of the diffusion of
generic or self-propagating innovations like PV or other
types of RET.
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