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Abstract

The use of renewable energy (RE) has recently increased worldwide.

Solar and wind, notably are the most emerging source of alternative
sources of energy. In regards to total energy consumption, India is ranked
third after China and the United States of America (USA).

The key challenge is to develop machine learning models for accurately
forecasting renewable energy, allowing grid operators and energy
managers to adjust energy supply and demand accordingly to improve

grid stability and reliability.
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I Indian Power Scenario
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2™ Largest source of Power Generation in India is RE (28%)

Data is as on May 2022

Taken form ** National institute of Wind Energy (NIWE)



Motivation

. India is world's 3rd largest renewable energy producer with 40% of energy capacity
installed in the year 2022 (160 GW of 400 GW) coming from renewable sources [1][2].

. India aims to achieve 175 GW of renewable energy capacity by 2022, with 100 GW
from solar, 60 GW from wind.

. India has committed for a goal of 500 GW renewable energy capacity by 2030 [3].

« Accurate forecasting of renewable energy allows grid operators and energy managers
to adjust energy supply and demand accordingly.

. Toimprove grid stability and reliability.

. India is committed to reducing its carbon emissions and meeting its climate change
goals. Renewable energy forecasting can help in achieving these goals.

. Collaboration with National Institute of Wind Energy (NIWE).

. NIWE has interest in short-term (1 hr to 4 hrs ahead) wind forecasting.

« Green energy corridor to facilitate Grid integration of large scale renewables.



Challenges

. Weather variability: India's weather is highly variable and unpredictable, which
makes it challenging to accurately predict renewable energy generation.

. Lack of Sufficient Data: There are few weather stations and wind measuring devices,
and the data collected is often of low quality and insufficient to develop accurate
forecasting models.

. Lack of Standardization: lack of standardization in the data collection and
forecasting methodologies, making it difficult to compare results across regions and
technologies.

. Inadequate Forecasting Models: India lacks the technical expertise and tools to
develop sophisticated forecasting models. The existing models are often outdated
and not suitable for India's weather patterns and renewable energy sources.

. Policy and regulatory challenges: India's renewable energy sector is subject to
complex policies and regulations.



Global Research Staus

Table 1. Studies based on currently implemented models on solar irradiation prediction.

According to Table 1:

Recent papers adopted Bidirectional
LSTM and reported better results.

Most of the studies limited to one solar
station.

There are very limited studies have
been conducted for India.

According to [10], 42% of the analyzed
articles developed hybrid approaches,
83% performed short-term prediction.

According to [11], research topics such
as spatial forecast verification or
forecast downscaling are to be tackled.

Citation

Data

Model Name

Forecasting
Window

Country

Correctness

A/D

[#]

Time Series

LSTM (Unidirectional)

Hourly

Egypt

The climed forecast-

ing error is 82.15, and
136.87 in terms of RMSE

Perfromed better
compared to MLR,

BRT, and NN

[27]

Time Series

Bi-LSTM (Bidirectional)

Hourly

China

BI-LSTM produced cor-

relation coefficient of
98%, and RMSE of 0,791

Same past context
used for both the
forward and the
backward mode

(28]

Time Series

PSO-LSTM
(Bidirectional)

Multiple days

China

PSO-LSTM  achieved
the lowest MAE, and
RMSE as 8.14, and 19.41

Same past context
used for both the
forward and the
backward mode

[36]

Time Series

CNN-LSTM
(Unidirectional)

1-Day, 1-Week, 2-

Week and 1-Month

Australia

It achieved Ilower
MAPE < 11%, and
RRMSE < 15%

compared o bench-

mark models

This study is

limited to one solar
station

[33]

Time Series

LSTM-CNN (Unidirec-

tional)

Multiple days

China

LSTM-CNN  achieved

the best MAE, RMSE,
and MAPE as 0221,

0.621, and 0.042

This study is
limited to one
solar station

Time Series

MLP (Unidirectional)

Manthly

UAE

MLFP has shown the
best MBE, ans EMSE as
0.0003, and 0.179

The model is wvali-
dated for three so-
lar stations

[20]

Time Series

RF

lhtoth

France

RF achieved the low-

est forecasting error as
1965% to 27.78% iIn
terms of RMSE

This study is re-
stricted to one solar
station

[10]

Aemsol  Optical
Depth (AOD) and
the Angstrom
Exponent data

MLP {Unidirectional)

1h

Saudi Arabia

MLF achieved lower
EMSE under 4%
and forecast skill of
over 42%

The study is re-

strcted to one solar
site

[29]

Time Series

Sminto3h

Australia

EF achieved the lowest
overall MAE, and MRE
as 110.46, and 10.5%

The proposed
maodel is univariate,
and restricted to
one solar site

Taken form ** Malakar, Sourav, et al. "A novel feature representation for
prediction of global horizontal irradiance using a bidirectional model."
Machine Learning and Knowledge Extraction 3.4 (2021): 946-965
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Problem Space

- Problem 1: The current literature does not provide clear guidelines for
design choices of LSTM based models in solar forecasting [4-7].

. Problem 2: As renewable energy has a strong local weather dependence.
Hence, individual forecasting model for each station-season combination,
which results in a considerable number of models across India.

. Problem 3: For a country like India evidently, no such short-term solar
forecasting models have been found based on cloud-dependent clustering.

- Problem 4: Prior research provides no information on variations in model
performance for different terrains and seasons in wind forecasting.



I Case Studies

. Solution (problem 3): Deep-Learning-Based
Adaptive Model for Solar Forecasting Using Regime
Dependent Clustering [9]



Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering
(Contd.)

Sky conditions

(c) Scattered

(d) Broken (d) Overcast
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering

(Contd.)

Hourly Variation of Cloud Types (Taken from: https://www.waff.com/weather/
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering
(Contd.)

. Parity plot showing forecast and actual clearness indices.
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering
(Contd.)

. Variables used for K-medioid clustering.

. Clearness index (Kt): Ratio of surface radiation divided by the
extraterrestrial radiation

Predictors Description
Locally derived variables
ktirend Recent trend in Kt.
Kt temporal variability (Stdev 1-h)  The temporal variability in Kt for past one hour.
Kt Slope (1-h) The slope of Kt over the past hour.
Remotely derived variables
KtPrev15 nearby mean The spatial mean of Kt.
KtPrevl5 nearby std The spatial variability of Kt.

Cloud-cover variability (Stdev) The spatial variability of cloud cover.

Cloud Cover Squired Thickness of cloud cover.
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering

(Contd.)

. Understanding cloud patterns via cluster-specific distribution of

cloud type.
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering
(Contd.)

. Forecasting performance of CB-LSTM compared to multivariate and
spatiotemporal LSTM

CB-LSTM CB-ANN ST-LSTM
Forecasting Sites = NRMSE NRMSE NRMSE

Composite
Bhainsdehi 0.1936 0.2762 0.2515
Begamganj 0.2016 0.3118 0.3410
Dindori 0.2530 0.3440 0.3352
Hot and dry
Tiruchirappalli 0.2903 0.3414 0.5419
Idukki 0.4934 0.5288 0.6037
Madurai 0.3208 0.3288 0.5447
Warm and humid
Khaga 0.2641 0.3195 0.3300
Vaibhavwadi 0.3599 0.4980 0.4423
Osmanabad 0.3757 0.4760 0.4408
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(Contd.)

. Forecasting performance of CB-LSTM compared with benchmark

models in terms of NRMSE (%).

Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering

Forecasting Sites CB-LSTM [4] [5] [6]

Composite

Bhainsdehi 19.36%  22.75% 26.09% 27.62%

Begamgan)] 20.16%  20.74% 26.39% 31.18%

Dindori 25.30% 25.09% 27.93% 34.40%
Hot and dry

Tiruchirappalli 29.03% 38.06% 47.62% 34.14%

Idukki 49.34% 49.82% 54.04% 52.88%

Madurai 32.08% 34.14% 47.67% 32.88%

Warm and humid

Khaga 26.41%  20.90% 24.02% 31.95%

Vaibhavwadi 35.99%  45.70% 46.61% 49.80%

Osmanabad 37.57%  48.89% 41.98% 47.60%
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Deep-Learning-Based Adaptive Model for Solar
Forecasting Using Regime Dependent Clustering
(Contd.)

. Climatic-zone and region specific variability in predictions
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The symbol "1" indicates an outlier.
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I Future Scope

. Regime-dependent short-range solar forecasting needs
real-time forecasting.

. Propose new time-series imputation model for
continuous missing data in wind forecasting.

. Deploy the proposed algorithms in real-life scenarios in
India. Also extension of the testbed by covering more
climatic zones, and solar and wind stations across India.
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